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ABSTRACT  

In this article, the dynamical behavior of a three dimensional continuous time eco-epidemiological model is studied. 

A prey-predator model involving infectious disease in predator population is proposed and analyzed. This model 

deals with SI infectious disease that transmitted horizontally in predator population. It is assumed that the disease 

transmitted to susceptible population in two different ways: contact with infected individuals and an external 

sources. The existence, uniqueness and bounded-ness of the solution of this model are investigated. The local and 

global stability conditions of all possible equilibrium points are established. The local bifurcation analysis and a 

Hopf bifurcation around the positive equilibrium point are obtained. Finally, numerical simulations are given to 

illustrate our obtained analytical results. 
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I. INTRODUCTION 
The effect of disease in ecological system is an important issue from mathematical as well as ecological points of 

view. So, in recent time ecologists and researchers are paying more and more attention to the development of 

important tool along with experimental ecology and describe how ecological species are infected. A simple 

differential equations prey-predator model to describe the population dynamics of two interacting species was first 

proposed by the Italian mathematician Vito Volterra and the same differential equations were also derived by Alfred 

Lotka, a chemist. One of the earliest prey-predator models which are based on sound mathematical logic is the 

Lotka-Volterra model, which forms the basis of many models used in population dynamics. There are four factors in 

Lotka-Volterra model which are growth rate of prey, predation rate, mortality rate of predator and conversion rate to 

change prey biomass into predator population as well as prey population, which grows logistically. On the other 

hand, most models for the transmission of infectious diseases were originated from the classic work of Kermack and 

Mc Kendrick [1]. 

 

 Eco-epidemiological modelling provides challenges in both applied mathematics and theoretical ecology. Anderson 

and May (1986) [2], were the first who merged ecology and epidemiology and formulated a prey-predator model 

where the prey species were infected by some infectious diseases. The influence of predation on epidemics has not 

yet been studied considerably, except the works of Anderson and May [3], Hadeler and Freedman [4], Hochberg [5], 

Venturino [6, 7], Chattopadhyay and Arino [8], Han et al. [9], Xiao and Chen [10], Hethcote et al. [11], Greenhalgh 

and Haque [12], and Haque and Venturino [13, 14]. Most of these works have dealt with prey-predator models with 

disease in the prey (except Venturino [6], and Haque and Venturino [13, 14]). Further more, in recent years eco-

epidemiological system with disease in predator has become the most interesting part of research among all 

mathematical models. Such systems governed mainly by continuous time models investigate stability, bounded-ness 

and persistence. Krishnapada Das et al. and Prasenjit Das et al. [15-16] studied the prey-predator system with 

disease in the predator population and discussed the chaos in this system. Pierre Auger et al.,  Pallav et al., and many 

other authors have studied the prey-predator system with disease in predator [17, 18]. 

 

The simplest models contain a bilinear mass action term, quadratic in both the interacting populations, called also 

Holling type I. This term appears due to the fact that an individual can in principle interact with the whole other 

population, the product of the two populations is the obvious outcome. We consider the fact that in general a single 

individual can feed only until the stomach is full, a saturation function indicate the intake of food. The latter can be 

modeled by using the concept of the ʻʻlaw of diminishing returnsʼʼ or technically speaking Michaelis-Menten or  
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Holling type II term. The present model is a modification of the previous model studied by Cosner et al. [19], 

allowing a disease to spread among the predator species only. 

 

This paper is organized as follows: In section 2: The mathematical model is given and the bounded-ness of the 

solution of this model is proved. In section 3: The existence and local stability analysis of all feasible equilibrium 

points are studied, global stability analysis for the axial and positive equilibrium points by constructing suitable 

Lyapunov function are presented. In section 4: An application of Sotomayorś theorem [20] for local bifurcation is 

used to study the occurrence of local bifurcation near the positive equilibrium point. In section 5: The Hopf 

bifurcation conditions near the positive equilibrium point are derived. In section 6: Numerical simulations are 

carried out to support our analytical results. Finally, the last section 7, is devoted to the conclusions and discussion. 

 

II. THE MATHEMATICAL MODEL 

In this section, a prey-predator system involving an SI epidemic disease in predator population is proposed for study. 

In the presence of disease, the predator population is divided into two classes: the susceptible individuals 𝑌(𝑇) and 

the infected individuals 𝑍(𝑇). Here 𝑌(𝑇) represents the density of susceptible predator population at time T   while 

𝑍(𝑇) represents the density of infected predator population at time T. The prey population, which denotes to their 

density at time T by 𝑋(𝑇), grows logistically with intrinsic growth rate 𝑟 > 0 and environmental carrying capacity 

𝑘 > 0. In the absence of prey species the predator species (susceptible as well as infected) decay exponentially with 

a natural death rate 𝑑1 > 0. The predator species (susceptible as well as infected) consumes the prey species 

according to modified Cosner type of functional response with maximum attack rate 𝑎1 > 0 and 𝑎2 > 0 respectively 

and half-saturation constant 𝑏 > 0. However it converts the food from prey with a conversion rates 𝑒1 > 0 𝑎𝑛𝑑 𝑒2 >
0 respectively. The existence of disease may causes death in the infected predator with disease death rate 𝑑2 > 0. 

Further its assumed that the disease transferred horizontally between the predator individuals of the same offspring 

either by contact between the susceptible individuals and infected individuals with contact infected rate 𝑐1 > 0 or 

through an external sources (food, water, air, others) with external infected rate 𝑐2 > 0, this is mean that all the new 

bourn individuals are susceptible individuals. Finally there is a limited vaccine given to the predator individuals to 

protect them from incidence by disease with vaccine rate 0 < 𝑛 < 1, this is left (1 − 𝑛) susceptible to the disease. 

Keeping the above hypothesis in view the dynamics of this system can be describe in the following set of differential 

equations. 
𝑑𝑋

𝑑𝑇
= 𝑟𝑋 (1 −

𝑋

𝑘
) −

𝑎1𝑋𝑌2

𝑏+𝑋𝑌
−

𝑎2𝑋𝑍2

𝑏+𝑋𝑍
= 𝐹1(𝑋, 𝑌, 𝑍)

𝑑𝑌

𝑑𝑇
= 𝑒1

𝑎1𝑋𝑌2

𝑏+𝑋𝑌
+ 𝑒2

𝑎2𝑋𝑍2

𝑏+𝑋𝑍
− (1 − 𝑛)𝑌[𝑐1𝑍 + 𝑐2] − 𝑑1𝑌 = 𝐹2(𝑋, 𝑌, 𝑍)

𝑑𝑍

𝑑𝑇
= (1 − 𝑛)𝑌[𝑐1𝑍 + 𝑐2] − (𝑑1 + 𝑑2)𝑍 = 𝐹3(𝑋, 𝑌, 𝑍)

         (1) 

 

here 𝑋(0) > 0, 𝑌(0) > 0  𝑎𝑛𝑑 𝑍(0) > 0. The flow of disease in system (1) can be described in the following block 

diagram.  

 
Fig. (1): Block diagram for prey-predator model given by system (1). 
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Clearly, system (1) included (12) parameters, which make the analysis difficult. So, in order to simplify the system, 

the number of parameters is reduced to (10) by using the following dimensionless variables.       

 𝑡 = 𝑟𝑇, 𝑥 =
𝑋

𝑘
 , 𝑦 =

𝑌

𝑘
 , 𝑧 =

𝑍

𝑘
 

 

Thus we obtain: 

 

𝑑𝑥

𝑑𝑡
= 𝑥 [1 − 𝑥 −

𝑤1𝑦2

𝑤3+𝑥𝑦
−

𝑤2𝑧2

𝑤3+𝑥𝑧
] = 𝑥𝑓1(𝑥, 𝑦, 𝑧)

𝑑𝑦

𝑑𝑡
=  

𝑒1𝑤1𝑥𝑦2

𝑤3+𝑥𝑦
+

𝑒2𝑤2𝑥𝑧2

𝑤3+𝑥𝑧
− 𝑤4𝑦 − (1 − 𝑛)𝑦[𝑤5𝑧 + 𝑤6] = 𝑓2(𝑥, 𝑦, 𝑧)

𝑑𝑧

𝑑𝑡
= (1 − 𝑛)𝑦[𝑤5𝑧 + 𝑤6] − [𝑤4 + 𝑤7]𝑧 = 𝑓3(𝑥, 𝑦, 𝑧)

           (2) 

 

here 𝑤1 =
𝑎1

𝑟
 , 𝑤2 =

𝑎2

𝑟
 , 𝑤3 =

𝑏

𝑘2  , 𝑤4 =
𝑑1

𝑟
 , 𝑤5 =

𝑐1 𝑘

𝑟
, 𝑤6 =

𝑐2

𝑟
 , and 𝑤7 =

𝑑2

𝑟
 represent the dimensionless 

parameters of the system (2). Moreover the initial condition of system (2) may be taken as any point in the region 

𝑅+
3   . The interaction functions in the right hand side of system (2) are continuous and have continuous partial 

derivatives on 𝑅+
3 , Therefore these functions are Lipschitizian on 𝑅+

3 , and hence the solution of the system (2) exists  

and is unique. Further, in the following theorem, the bounded-ness of all the solutions of the system (2) in 𝑅+
3  is 

established.  

 

Theorem 1. All the solutions of the system (2), which initiate in 𝑅+
3  are uniformly bounded. 

 

Proof. Let (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be any solution of the system (2) with non- negative initial condition  (𝑥0, 𝑦0, 𝑧0) . 

According to the first equation of system (2) we have 

 
𝑑𝑥

𝑑𝑡
≤ 𝑥(1 − 𝑥)  

 

Then according to the theory of differential inequality [21], we have 𝑆𝑢𝑝 𝑥(𝑡) ≤ M, ∀𝑡 ≥ 0 , here 𝑀 = max {𝑥0, 1}. 

Define the function 𝐺(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡), then the time derivative of 𝐺(𝑡) along the solution of system (2) is 
𝑑𝐺

𝑑𝑡
≤ 2 − 𝜇𝐺  where  𝜇 = min {1, 𝑤4} and this gives that 

𝑑𝐺

𝑑𝑡
+ 𝜇𝐺 ≤ 2. Again, due to the theory of differential 

inequality we obtain 

 𝐺(𝑡) ≤
2

𝜇
+ (𝐺0 −

2

𝜇
)𝑒−𝜇𝑡 

where 𝐺0 = (𝑥(0), 𝑦(0), 𝑧(0)). Thus, ∀𝑡 ≥ 0 we have that 0 ≤ 𝐺(𝑡) ≤
2

𝜇
 .Hence all solutions of system (2) are 

uniformly bounded and therefore we have finished the proof.    

                                                                                                                        

III. THE STABILITY ANALYSIS OF SYSTEM 

In thissection the existence and stability analysis of allfeasible equilibrium points of system (2) are studied. Its 

observed that system (2) has at most three equilibrium points, which can be stated as follows  

1. The trivial equilibrium point, which is denoted by 𝐸0 = (0, 0, 0) always exists. 

2. The axial equilibrium point, which is denoted by𝐸1 = (1, 0, 0) always exists. 

3. The positive equilibrium point, say 𝐸2 = (𝑥2
∗, 𝑦2

∗, 𝑧2
∗), of the system (2) exists if there is a positive solution 

that denoted by (𝑥2
∗, 𝑦2

∗, 𝑧2
∗) to the following set of equations 

 

 1 − 𝑥 −
𝑤1𝑦2

𝑤3+𝑥𝑦
−

𝑤2𝑧2

𝑤3+𝑥𝑧
= 0                                          (3a) 

 
𝑒1𝑤1 𝑥𝑦2

𝑤3+𝑥𝑦
+

𝑒2𝑤2𝑥𝑧2

𝑤3+𝑥𝑧
− 𝑤4𝑦 − (1 − 𝑛)𝑦[𝑤5𝑧 + 𝑤6] = 0             (3b) 

 (1 − 𝑛)𝑦[𝑤5𝑧 + 𝑤6] − [𝑤4 + 𝑤7]𝑧 = 0               (3c) 

 

From equation (3c) we get  

 𝑦 =
[𝑤4+𝑤7]𝑧

(1−𝑛)[𝑤5𝑧+𝑤6]
                  (4) 
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Now, by substituting equation (4) in equations (3a) and (3b) yield the following two isoclines  

   𝑓(𝑥, 𝑧) = 𝐴1𝑧4 + 𝐴2𝑧3 + 𝐴3𝑧2 + 𝐴4𝑧 + 𝐴5𝑥𝑧                                     

       +𝐴6𝑥2 𝑧 + 𝐴7𝑥𝑧2 + 𝐴8𝑥𝑧3 + 𝐴9𝑥𝑧4 + 𝐴10𝑥2𝑧2

                       +𝐴11𝑥2𝑧3 + 𝐴12𝑥3𝑧2 + 𝐴13𝑥3𝑧3 + 𝐴14𝑥 + 𝐴15 = 0

                            (5a) 

    𝑔(𝑥, 𝑧) = 𝐵1𝑧3 + 𝐵2𝑧2 + 𝐵3𝑧 + 𝐵4𝑥𝑧2 + 𝐵5𝑥𝑧3

             +𝐵6𝑥𝑧4 + 𝐵7𝑥2𝑧3 + 𝐵8𝑥2𝑧4 = 0
                          (5b) 

 

Where 𝐴1 = −𝑤2(1 − 𝑛)2𝑤5
2𝑤3 

 𝐴2 = −2𝑤2(1 − 𝑛)2𝑤5𝑤3𝑤6 

 𝐴3 = 𝑤3
2𝑤5

2(1 − 𝑛)2 − 𝑤1[𝑤4 + 𝑤7]2𝑤3 − 𝑤2(1 − 𝑛)2𝑤6
2𝑤3 

 𝐴4 = 2𝑤3
2𝑤5(1 − 𝑛)2𝑤6 

 
𝐴5 = (1 − 𝑛)𝑤3𝑤6[𝑤4 + 𝑤7] + (1 − 𝑛)2𝑤6

2𝑤3

 −2(1 − 𝑛)2𝑤3
2𝑤5𝑤6

 

 𝐴6 = −(1 − 𝑛)𝑤3𝑤6[𝑤4 + 𝑤7] − (1 − 𝑛)2𝑤6
2𝑤3 

 

 
 𝐴7 = (1 − 𝑛)𝑤3𝑤5[𝑤4 + 𝑤7] + 2(1 − 𝑛)2𝑤5𝑤3𝑤6

−(1 − 𝑛)2𝑤3
2𝑤5

2  

 𝐴8 = (1 − 𝑛)2𝑤5
2𝑤3 − 𝑤1[𝑤4 + 𝑤7]2 − 𝑤2(1 − 𝑛)𝑤6[𝑤4 + 𝑤7] 

 𝐴9 = −𝑤2(1 − 𝑛)𝑤5[𝑤4 + 𝑤7] 

 
 𝐴10 = (1 − 𝑛)𝑤6[𝑤4 + 𝑤7] − (1 − 𝑛)𝑤3𝑤5[𝑤4 + 𝑤7]

−2(1 − 𝑛)2𝑤5𝑤3𝑤6
 

 𝐴11 = (1 − 𝑛)𝑤5[𝑤4 + 𝑤7] − (1 − 𝑛)2𝑤5
2𝑤3 

 𝐴12 = −(1 − 𝑛)𝑤6[𝑤4 + 𝑤7] 
 𝐴13 = −(1 − 𝑛)𝑤5[𝑤4 + 𝑤7] 
 𝐴14 = −(1 − 𝑛)2𝑤3

2𝑤6
2 

 𝐴15 = 𝑤3
2𝑤6

2(1 − 𝑛)2 

and 𝐵1 = −[𝑤4 + 𝑤7](1 − 𝑛)2𝑤3
2𝑤5

2 

 𝐵2 = −𝑤4[𝑤4 + 𝑤7]𝑤3
2(1 − 𝑛)𝑤5 − 2[𝑤4 + 𝑤7](1 − 𝑛)2𝑤3

2𝑤5𝑤6 

 𝐵3 = −𝑤4[𝑤4 + 𝑤7]𝑤3
2(1 − 𝑛)𝑤6 − [𝑤4 + 𝑤7](1 − 𝑛)2𝑤3

2𝑤6
2 

 

𝐵4 = 𝑒1𝑤1[𝑤4 + 𝑤7]2𝑤3 + 𝑒2𝑤2(1 − 𝑛)2𝑤6
2𝑤3

  −𝑤4[𝑤4 + 𝑤7]2𝑤3 − 𝑤4[𝑤4 + 𝑤7]𝑤3(1 − 𝑛)𝑤6

−[𝑤4 + 𝑤7]2(1 − 𝑛)𝑤3𝑤6 − [𝑤4 + 𝑤7](1 − 𝑛)2𝑤6
2𝑤3

 

𝐵5 = 2𝑒2𝑤2(1 − 𝑛)2𝑤5𝑤3𝑤6 − 𝑤4[𝑤4 + 𝑤7]𝑤3(1 − 𝑛)𝑤5 − [𝑤4 + 𝑤7]2(1 − 𝑛)𝑤3𝑤5

− 2[𝑤4 + 𝑤7](1 − 𝑛)2𝑤5𝑤3𝑤6 

 𝐵6 = 𝑒2𝑤2(1 − 𝑛)2𝑤5
2𝑤3 − [𝑤4 + 𝑤7](1 − 𝑛)2𝑤5

2𝑤3 

 
𝐵7 = 𝑒1𝑤1[𝑤4 + 𝑤7]2 + 𝑒2𝑤2(1 − 𝑛)𝑤6[𝑤4 + 𝑤7]

   −𝑤4[𝑤4 + 𝑤7]2 − [𝑤4 + 𝑤7]2(1 − 𝑛)𝑤6

 

 𝐵8 = 𝑒2𝑤2(1 − 𝑛)𝑤5[𝑤4 + 𝑤7] − [𝑤4 + 𝑤7]2(1 − 𝑛)𝑤5 
 

From equation (5a) we note that as 𝑧 → 0, then 𝑥 → 𝑥1, with  

 𝑥1 = −
𝐴15

𝐴14
> 0                                     (6) 

 

Also from the equation (5a), we have 
𝑑𝑥

𝑑𝑧
= −

𝜕𝑓

𝜕𝑧

𝜕𝑓

𝜕𝑥
⁄  is negative provided that 

 

𝜕𝑓

𝜕𝑧
> 0 and

𝜕𝑓

𝜕𝑥
> 0

or
𝜕𝑓

𝜕𝑧
< 0 and

𝜕𝑓

𝜕𝑥
< 0

         (7) 
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Again from equation (5b), we note that when 𝑧 → 0, then 𝑥 → 0. Moreover we have 
𝑑𝑥

𝑑𝑧
= −

𝜕𝑔

𝜕𝑧

𝜕𝑔

𝜕𝑥
⁄  is positive 

provided that 

 

𝜕𝑔

𝜕𝑧
> 0 and

𝜕𝑔

𝜕𝑥
< 0

or
𝜕𝑔

𝜕𝑧
< 0 and

𝜕𝑔

𝜕𝑥
> 0

                      (8) 

 

From the above analysis we note that two isoclines (5a) and (5b) intersect at a unique positive point denoted 

by (𝑥2
∗, 𝑧2

∗) provided that conditions (7)-(8) are satisfied. Knowing the values of 𝑥2
∗and𝑧2

∗, the value of 𝑦2
∗ can be 

calculated from equation (4) above, this is presents the conditions of existence of 𝐸2 = (𝑥2
∗ , 𝑦2

∗ , 𝑧2
∗) . 

        Now the local stability analysis of the above feasible equilibrium points of system (2) is studied analytically 

with the help of Linearization method. Note that it is easy to verify that, the Jacobian matrix of system (2) at the 

trivial equilibrium point 𝐸0 = (0, 0, 0) can be written in the form: 

 𝐽0 ≡ 𝐽(𝐸0) =  (

1 0 0
0 −𝑤4 − (1 − 𝑛)𝑤6 0

0 (1 − 𝑛)𝑤6 −(𝑤4 + 𝑤7)
)                                (9) 

 

Clearly,𝐽0 has two negative eigenvalues 𝜆𝑦 = −𝑤4 − (1 − 𝑛)𝑤6,   𝜆𝑧 = −[𝑤4 + 𝑤7] and one positive eigenvalue in 

the 𝑥-direction (𝜆𝑥 = 1),  so the equilibrium point 𝐸0 is unstable saddle point. 

 

 

 

 

The Jacobian matrix of system (2) at the axial equilibrium point 𝐸1 = (1, 0, 0) can be written as: 

 𝐽1 ≡ 𝐽(𝐸1) = (

−1 0 0
0 −𝑤4 − (1 − 𝑛)𝑤6 0

0 (1 − 𝑛)𝑤6 −(𝑤4 + 𝑤7)
)             (10) 

 

Clearly,  𝐽1 has three negative eigenvalues 𝜆1𝑥 = −1, 𝜆1𝑦 = −𝑤4 − (1 − 𝑛)𝑤6 and     𝜆1𝑧 = −[𝑤4 + 𝑤7], so  the 

equilibrium point 𝐸1 is always locally asymptotically stable. 

The Jacobian matrix of system (2) at positive equilibrium point 𝐸2can be written as  

 𝐽2 ≡ 𝐽(𝐸2) = (𝑎𝑖𝑗)
3×3

               (11a) 

 

here  𝑎11 = 𝑥2
∗ [−1 +

𝑤1𝑦2
∗3

𝑀1
∗2 +

𝑤2𝑧2
∗3

𝑀2
∗2 ] 

 𝑎12 = 𝑥2
∗ [−

2𝑤1𝑤3𝑦2
∗+𝑤1𝑥2

∗𝑦2
∗2

𝑀1
∗2 ] < 0 

 𝑎13 = 𝑥2
∗ [−

2𝑤2𝑤3𝑧2
∗+𝑤2𝑥2

∗𝑧2
∗2

𝑀2
∗2 ] < 0 

 𝑎21 =
𝑒1𝑤1𝑤3𝑦2

∗2

𝑀1
∗2 +

𝑒2𝑤2𝑤3𝑧2
∗2

𝑀2
∗2 > 0 

 𝑎22 =
2𝑒1𝑤1𝑤3𝑥2

∗𝑦2 
∗  +𝑒1𝑤1𝑥2

∗2
𝑦2

∗2

𝑀1
∗2 − 𝑤4 − (1 − 𝑛)[𝑤5𝑧2

∗ + 𝑤6] 

 𝑎23 =
2𝑒2𝑤2𝑤3𝑥2

∗𝑧2
∗+𝑒2𝑤2𝑥2

∗2
𝑧2

∗2

𝑀2
∗2 − (1 − 𝑛)𝑤5𝑦2

∗ 

 𝑎31 = 0 

 𝑎32 = (1 − 𝑛)[𝑤5𝑧2
∗ + 𝑤6] > 0 

 𝑎33 = (1 − 𝑛)𝑦2
∗𝑤5 − [𝑤4 + 𝑤7] 

 𝑀1
∗ = 𝑤3 + 𝑥2

∗𝑦2
∗𝑎𝑛𝑑  𝑀2

∗ = 𝑤3 + 𝑥2
∗𝑧2

∗ 

 

Then the characteristic equation of 𝐽2  can be written as: 
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 𝜆3 + 𝐶1𝜆2 + 𝐶2𝜆 + 𝐶3 = 0              (11b) 

 

Where 𝐶1 = −(𝑎11 + 𝑎22 + 𝑎33), 

 𝐶2 = 𝑎22𝑎33 − 𝑎23𝑎32 + 𝑎11𝑎33 + 𝑎11𝑎22 − 𝑎12𝑎21 

 𝐶3 = 𝑎33(𝑎12𝑎21 − 𝑎11𝑎22) + 𝑎32(𝑎11𝑎23 − 𝑎13𝑎21) 

 

 

However  

∆= 𝐶1𝐶2 − 𝐶3 = −2𝑎11𝑎22𝑎33 − 𝑎22
2(𝑎33 + 𝑎11)

                                                 −(𝑎22 + 𝑎11)(𝑎33
2 − 𝑎12𝑎21) − 𝑎22𝑎11

2

                                                 +𝑎22𝑎23𝑎32 − 𝑎33𝑎11
2 + 𝑎32(𝑎33𝑎23 + 𝑎13𝑎21)

 

 

Now according to Routh-Hurwitz criterion the equilibrium point 𝐸2 is locally asymptotically stable, provided that 

𝐶1 > 0, 𝐶3 > 0 and Δ = 𝐶1𝐶2 − 𝐶3 > 0. Hence straightforward computation shows that the equilibrium point 𝐸2 is 

locally asymptotically stable provided that  

 
𝑤1𝑦2

∗3

𝑀1
∗2 +

𝑤2𝑧2
∗3

𝑀2
∗2 < 1                   (12a) 

 
2𝑒1𝑤1𝑤3𝑥2 

∗ 𝑦2
∗+𝑒1𝑤1𝑥2

∗2
𝑦2

∗2

𝑀1
∗2 < 𝑤4                  (12b) 

 
2𝑒2𝑤2𝑤3𝑥2

∗𝑧2
∗+𝑒2𝑤2𝑥2

∗2
𝑧2

∗2

𝑀2
∗2 < (1 − 𝑛)𝑦2

∗𝑤5 < 𝑤4 + 𝑤7                                         (12c) 

 

 

((1 − 𝑛)𝑦2
∗𝑤5 − [𝑤4 + 𝑤7]) (

𝑒2𝑤2𝑥2
∗𝑧2

∗(2𝑤3+𝑥2
∗𝑧2

∗)

𝑀2
∗2 − (1 − 𝑛)𝑦2

∗𝑤5)

> 𝑥2
∗𝑤2𝑧2

∗ (2𝑤3+𝑥2
∗𝑧2

∗)

𝑀2
∗2 (

𝑒1𝑤1𝑤3𝑦2
∗2

𝑀1
∗2 +

𝑒2𝑤2𝑤3𝑧2
∗2

𝑀2
∗2 )

                       (12d)      

 

Clearly, the conditions (12a)-(12c) guarantee that 𝑎11, 𝑎22, 𝑎33 and 𝑎23   are negative and hence 𝐶1 > 0 and𝐶3 > 0. 
However, the conditions (12a)-(12d) guarantee that 𝐶1𝐶2 − 𝐶3 > 0. 
       

 Now the global stability analysis of the feasible equilibrium points of system (2) is studied analytically with the 

help of Lyapunov method as shown in the following theorems. 

 

Theorem 2. Assume that the axial equilibrium point  𝐸1 is a locally asymptotically stable in 𝑅+
3 , then 𝐸1is a globally 

asymptotically stable on the sub region of 𝑅+
3  that satisfy the following conditions: 

 𝑒1 ≥ 𝑒2                               (13a) 

 𝑦 <
𝑤3𝑤4

𝑒1𝑤1
                 (13b) 

 𝑧 <
𝑤3[𝑤4+𝑤7]

𝑒1𝑤2
                 (13c) 

 

Proof. Consider the following positive definite function: 

 𝐿1 = 𝑏1[𝑥 − 1 − ln 𝑥] + 𝑏2𝑦 + 𝑏3𝑧 

where  𝑏𝑖; 𝑖 = 1, 2, 3  are positive constants to be determined. Clearly, 𝐿1: 𝑅+
3 → 𝑅  is continuously differentiable 

function so that𝐿1(1, 0, 0) = 0  and 𝐿1(𝑥, 𝑦, 𝑧) > 0 for all (𝑥, 𝑦, 𝑧) ∈ 𝑅+
3  with (𝑥, 𝑦, 𝑧) ≠ (1, 0, 0). 

Therefore by differentiating this function with respect to the time, we get: 

 
𝑑𝐿1

𝑑𝑡
= 𝑏1

(𝑥−1)

𝑥

𝑑𝑥

𝑑𝑡
+ 𝑏2

𝑑𝑦

𝑑𝑡
+ 𝑏3

𝑑𝑧

𝑑𝑡
 

 

Substituting the value of 
𝑑𝑥

𝑑𝑡
 ,

𝑑𝑦

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 from system (2) in the above equation and after doing some algebraic 

manipulation, we get that 
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𝑑𝐿1

𝑑𝑡
= −𝑏1(𝑥 − 1)2 −

𝑤1𝑥𝑦2

𝑤3+𝑥𝑦
(𝑏1 − 𝑏2𝑒1) + 𝑏1

𝑤1𝑦2

𝑤3+𝑥𝑦

       −
𝑤2𝑥𝑧2

𝑤3+𝑥𝑧
(𝑏1 − 𝑏2𝑒2) + 𝑏1

𝑤2𝑧2

𝑤3+𝑥𝑧
− 𝑏2𝑤4𝑦

                  −(1 − 𝑛)𝑦[𝑤5𝑧 + 𝑤6](𝑏2 − 𝑏3) − 𝑏3[𝑤4 + 𝑤7]𝑧

 

 

So by choosing the positive constants as below: 

𝑏1 = 𝑒1;      𝑏2 = 𝑏3 = 1 
and using condition (13a) we obtain that: 

 
𝑑𝐿1

𝑑𝑡
≤ −𝑒1(𝑥 − 1)2 − 𝑦 [𝑤4 − 𝑒1

𝑤1𝑦

𝑤3
] − 𝑧 [[𝑤4 + 𝑤7] − 𝑒1

𝑤2𝑧

𝑤3
] 

 

Now, it is easy to verify that, condition (13b) guarantees the negativity of the second term while condition (13c) 

guarantees the negativity of the third term. 

So; 
𝑑𝐿1

𝑑𝑡
 is negative definite and hence 𝐿1is a Lyapunov function. Thus 𝐸1 is a globally asymptotically stable on the 

sub region of 𝑅+
3  that satisfy the given conditions.          

 

Theorem 3. Assume that the positive equilibrium point 𝐸2 is a locally asymptotically stable in 𝑅+
3   then𝐸2 is a 

globally asymptotically stable on the sub region of 𝑅+
3   that satisfy the following conditions: 

 𝑃11 > 0                 (14a) 

 𝑃22 > 0                 (14b) 

 𝑃33 > 0                 (14c) 

𝑃12
2 < 𝑃11𝑃22                (14d) 

𝑃13
2 < 𝑃11𝑃33                (14e) 

 𝑃23
2 < 𝑃22𝑃33                (14f) 

where 𝑃11 = 1 −
𝑤1𝑦2

∗2
𝑦

𝑀1𝑀1
∗ −

𝑤2𝑧2
∗2

𝑧

𝑀2𝑀2
∗  

 𝑃12  =
𝑒2𝑤2𝑤3𝑧2

∗2

𝑀2𝑀2
∗ +

𝑒1𝑤1𝑤3𝑦2
∗2

−𝑤1𝑤3(𝑦+𝑦2
∗)−𝑤1𝑦2

∗𝑦𝑥2
∗

𝑀1𝑀1
∗  

 𝑃13 =
𝑤2𝑤3(𝑧+𝑧2

∗)+𝑤2𝑧2
∗𝑧𝑥2

∗

𝑀2𝑀2
∗  

 𝑃22 = (1 − 𝑛)(𝑧2
∗𝑤5 + 𝑤6) + 𝑤4 −

(𝑒1𝑤1𝑥2
∗𝑦2

∗𝑥𝑦+𝑒1𝑤1𝑤3𝑥(𝑦+𝑦2
∗))

𝑀1𝑀1
∗  

 𝑃23 = −(1 − n)𝑤5𝑦 + (1 − 𝑛)(𝑧2
∗𝑤5 + 𝑤6) +

𝑒2𝑤2𝑤3𝑥(𝑧+𝑧2
∗)+𝑒2𝑤2𝑥2

∗𝑧2
∗𝑥𝑧

𝑀2𝑀2
∗  

 𝑃33 = 𝑤4 + 𝑤7 − (1 − 𝑛)𝑤5𝑦 

 𝑀1 = 𝑤3 + 𝑥𝑦,    𝑀1
∗ = 𝑤3 + 𝑥2

∗𝑦2
∗ 

 𝑀2 = 𝑤3 + 𝑥𝑧,    𝑀2
∗ = 𝑤3 + 𝑥2

∗𝑧2
∗ 

 

Proof. Consider the following positive definite function: 

 𝐿2 = (𝑥 − 𝑥2
∗ − 𝑥2

∗ ln
𝑥

𝑥2
∗) +

(𝑦−𝑦2
∗)2

2
+

(𝑧−𝑧2
∗)2

2
 

 

Clearly, 𝐿2: 𝑅+
3 → 𝑅 is continuously differentiable function so that 𝐿2(𝑥2

∗, 𝑦2
∗, 𝑧2

∗) = 0 and 𝐿2(𝑥, 𝑦, 𝑧) > 0 for all 

(𝑥, 𝑦, 𝑧) ∈ 𝑅+
3  with (𝑥, 𝑦, 𝑧) ≠ (𝑥2

∗, 𝑦2
∗, 𝑧2

∗). 
 

Therefore by differentiating this function with respect to the time, we get: 

 
𝑑𝐿2

𝑑𝑡
=

(𝑥−𝑥2
∗)

𝑥

𝑑𝑥

𝑑𝑡
+ (𝑦 − 𝑦2

∗)
𝑑𝑦

𝑑𝑡
+ (𝑧 − 𝑧2

∗)
𝑑𝑧

𝑑𝑡
 

 

Substituting the value of  
𝑑𝑥

𝑑𝑡
 ,

𝑑𝑦

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 from system (2) in the above equation and after doing some algebraic 

manipulation, we get that 
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𝑑𝐿2

𝑑𝑡
= −𝑃11(𝑥 − 𝑥2

∗)2 + 𝑃12(𝑥 − 𝑥2
∗)(𝑦 − 𝑦2

∗) − 𝑃22(𝑦 − 𝑦2
∗)2

           −𝑃13(𝑥 − 𝑥2
∗)(𝑧 − 𝑧2

∗) + 𝑃23(𝑦 − 𝑦2
∗)(𝑧 − 𝑧2

∗) − 𝑃33(𝑧 − 𝑧2
∗)2

 

 

Now, it is easy to verify that, under the given conditions we can rewrite the above equation as a sum of quadratics. 

Then 

𝑑𝐿2

𝑑𝑡
≤ − [√

1

2
𝑃11(𝑥 − 𝑥2

∗) − √
1

2
𝑃22(𝑦 − 𝑦2

∗)]

2

               − [√
1

2
𝑃11(𝑥 − 𝑥2

∗) + √
1

2
𝑃33(𝑧 − 𝑧2

∗)]

2

           − [√
1

2
𝑃22(𝑦 − 𝑦2

∗) − √
1

2
𝑃33(𝑧 − 𝑧2

∗)]

2

 

 

So;  
𝑑𝐿2

𝑑𝑡
 is negative definite and hence 𝐿2 is a Lyapunov function. Thus𝐸2 is a globally asymptotically stable on the 

sub region of 𝑅+
3  that satisfy the given conditions.                                                                                                                    

 

IV.  THE LOCAL BIFURCATION ANALYSIS 

In this section, the effect of varying the parameters values on the dynamical behavior of the system (2) around each 

equilibrium points is studied analytically. It is well known that the existence of non-hyperbolic equilibrium point of 

system (2) is the necessary but not sufficient condition for bifurcation to occur. Therefore, in the following theorem 

an application to the Sotomayorś theorem [20] for local bifurcation is applied with the parameter value that transfers 

the equilibrium point from hyperbolic to non-hyperbolic. Before we go to study the local bifurcation that may occurs 

in system (2) near the non-hyperbolic equilibrium point the following calculations are needed.  

It is easy to check that for any non-zero vector 𝑉 = (𝑣1, 𝑣2, 𝑣3)𝑇 we have: 

𝐷2𝑓(𝑉, 𝑉) = (𝑑𝑖𝑗)
3×1

                 (15) 

 

here  𝑓 = (𝑓1, 𝑓2, 𝑓3)𝑇 with 𝑓𝑖; 𝑖 = 1,2,3 is given in system (2). 

𝑑11 = 𝑣1
2𝐾1 − 𝐾2𝑣1𝑣2 − 𝐾3𝑣2

2 − 𝐾4𝑣1𝑣3 − 𝐾5𝑣3
2 

 𝑑21 = 𝑣1
2𝐾6 + 𝐾2𝑒1𝑣1𝑣2 + 𝐾3𝑒1𝑣2

2 + 𝐾4𝑒2𝑣1𝑣3 + 𝐾5𝑒2𝑣3
2 − 𝐾7𝑣2𝑣3 

 𝑑31 = 𝐾7𝑣2𝑣3 

 

and 𝐾1 =
2𝑤1𝑤3𝑦3

𝑀1
3 +

2𝑤2𝑤3𝑧3

𝑀2
3 − 2; 𝐾2 =

4𝑤1𝑤3
2𝑦

𝑀1
3 ; 𝐾3 =

2𝑤1𝑤3
2𝑥

𝑀1
3 ; 𝐾4 =

4𝑤2𝑤3
2𝑧

𝑀2
3  

𝐾5 =
2𝑤2𝑤3

2𝑥

𝑀2
3 ; 𝐾6 = −

2𝑒1𝑤1𝑤3𝑦3

𝑀1
3 −

2𝑒2𝑤2𝑤3𝑧3

𝑀2
3 ; 𝐾7 = 2(1 − 𝑛)𝑤5 

 

While 

𝐷3𝑓(𝑉, 𝑉, 𝑉) = (𝑒𝑖𝑗)
3×1

                (16) 

 

where 𝑒11 = 𝑣1
3𝑁1 + 𝑣1

2𝑣2𝑁2 − 𝑣1𝑣2
2𝑁3 + 𝑣1

2𝑣3𝑁4 − 𝑣1𝑣3
2𝑁5 + 𝑁6𝑣2

3 + 𝑁7𝑣3
3 

 
𝑒21 = 𝑣1

3𝑁8 − 𝑣1
2𝑣2𝑒1𝑁2 + 𝑣1𝑣2

2𝑒1𝑁3 − 𝑣1
2𝑣3𝑒2𝑁4

+𝑣1𝑣3
2𝑒2𝑁5 − 𝑒1𝑁6𝑣2

3 − 𝑒2𝑁7𝑣3
3  

 𝑒31 = 0 

 

with 𝑁1 = −
6𝑤1𝑤3𝑦4

𝑀1
4 −

6𝑤2𝑤3𝑧4

𝑀2
4 ; 𝑁2 =

18𝑤1𝑤3
2𝑦2

𝑀1
4 ; 𝑁3 =

6𝑤1𝑤3
2(𝑤3−2𝑥𝑦)

𝑀1
4  
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𝑁4 =
18𝑤2𝑤3

2𝑧2

𝑀2
4 ; 𝑁5 =

6𝑤2𝑤3
2(𝑤3−2𝑥𝑧)

𝑀2
4 ; 𝑁6 =

6𝑤1𝑤3
2𝑥2

𝑀1
4 ; 𝑁7 =

6𝑤2𝑤3
2𝑥2

𝑀2
4  

𝑁8 =
6𝑒1𝑤1𝑤3𝑦4

𝑀1
4 +

6𝑒2𝑤2𝑤3𝑧4

𝑀2
4  

 

Note that, according to the Jacobian matrices of system (2) at   𝐸0 and 𝐸1, those given by Eq. (9) and (10) 

respectively, it is clear that 𝐽0 and 𝐽1 have always three non-zero eigenvalues. So, the equilibrium points 𝐸0 and 𝐸1 

cannot be non-hyperbolic equilibrium points. Thus, system (2) is structurally stable at 𝐸0 and 𝐸1 and hence it has no 

bifurcation at them. Accordingly in the following theorem we will study the occurrence of local bifurcation around 

the positive equilibrium point.  

 

Theorem 4. Suppose that the conditions (12a) and (12b) along with the following conditions are satisfied: 

(1 − 𝑛)𝑦2
∗𝑤5 > max {

2𝑒2𝑤2𝑤3 𝑥2
∗𝑧2

∗+𝑒2𝑤2𝑥2
∗2

𝑧2
∗2

𝑀2
∗2 , 𝑤4 −

𝑎32𝑆2

𝑆1
}                         (17a) 

𝛽3𝛽1
2𝐾1

∗ + 𝛽4𝛽1
2𝐾6

∗ + (𝐾2
∗𝛽1 + 𝐾3

∗𝛽2)𝛽2(𝛽4𝑒1 − 𝛽3) + (𝐾4
∗𝛽1 + 𝐾5

∗)(𝛽4𝑒2 − 𝛽3) + 𝐾7
∗𝛽2(1 − 𝛽4) ≠

0             (17b) 

 

here 𝑆1 = 𝑎12𝑎21 − 𝑎11𝑎22; 𝑆2 = 𝑎11𝑎23 − 𝑎13𝑎21 while 𝛽𝑖; 𝑖 = 1,2,3,4 are given in the proof. Then system (2) 

undergoes saddle-node bifurcation around 𝐸2, but neither transcritical bifurcation nor pitchfork bifurcation can 

occur, as the parameter 𝑤7 passes through the value 𝑤7
∗ = 𝑎32𝑆2 [−

𝑤4

𝑎32𝑆2
+

(1−𝑛)𝑦2
∗𝑤5

𝑎32𝑆2
+

1

𝑆1
]. 

Proof. Note that the characteristic equation given by Eq. (11b) having zero root (𝑠𝑎𝑦 𝜆 = 0) if and only if 𝐶3 = 0 

and then 𝐸2 becomes a non-hyperbolic equilibrium point. Now the Jacobian matrix of system (2) at the equilibrium 

point 𝐸2 with parameter 𝑤7 = 𝑤7
∗ becomes 

𝐽2
∗ = 𝐽2(𝐸2, 𝑤7

∗) = (𝑎𝑖𝑗)
3×3

 with 𝑎33 = −
𝑎32𝑆2

𝑆1
 

 

where 𝑎𝑖𝑗  for all 𝑖, 𝑗 = 1, 2, 3 is given by Eq. (11a). 

Note that, the conditions (12a)-(12b) and (17a) guarantee that 𝑎11, 𝑎22, 𝑎23 and 𝑆1 are negative, while 𝑤7
∗ and 𝑆2 are 

positive. Consequently, 𝑎33 becomes positive with 𝐶3 = 0. Therefore 𝐽2
∗ has a zero eigenvalue, say 𝜆 = 0, as the 

parameter 𝑤7 passes through the value 𝑤7
∗ .  

Let 𝑉∗ = (𝑣1
∗, 𝑣2

∗, 𝑣3
∗)𝑇 be the eigenvector corresponding to the eigenvalue 𝜆 = 0. Thus (𝐽2

∗ − 𝜆𝐼)𝑉∗ = 0, which  

 

gives: 

𝑣1
∗ = 𝛽1𝑣3

∗, 𝑣2
∗ = 𝛽2𝑣3

∗ with 𝛽1 = −
(𝑎12𝑆2+𝑆1𝑎13)

𝑎11𝑆1
∈ ℛ and 𝛽2 =

𝑆2

𝑆1
< 0 

while 𝑣3
∗ any non-zero real number.  

 

Let Ψ∗ = (𝛹1
∗, 𝛹2

∗, 𝛹3
∗)𝑇 be the eigenvector associated with the eigenvalue 𝜆 = 0 of the matrix   𝐽2

∗𝑇
. Then we 

have  (𝐽2
∗𝑇

− 𝜆𝐼) Ψ∗ = 0, which gives : 

𝛹1
∗ = 𝛽3𝛹3

∗, 𝛹2
∗ = 𝛽4𝛹3

∗ with 𝛽3 = −
𝑎21𝑎32

𝑆1
> 0 and 𝛽4 =

𝑎32𝑎11

𝑆1
> 0 

while 𝛹3
∗ any non-zero real number.  

 

Now, consider 

𝜕𝑓

𝜕𝑤7

= 𝑓𝑤7
(𝑋, 𝑤7) = (

𝜕𝑓1

𝜕𝑤7

,
𝜕𝑓2

𝜕𝑤7

,
𝜕𝑓3

𝜕𝑤7

)
𝑇

= (0, 0, −𝑧)𝑇 

So, 𝑓𝑤7
(𝐸2, 𝑤7

∗) = (0, 0, −𝑧2
∗)𝑇  and hence  

(Ψ∗)𝑇𝑓𝑤7
(𝐸2, 𝑤7

∗) = −𝛹3
∗𝑧2

∗ ≠ 0 

 

So, according to Sotomayorś theorem the transcritical bifurcation and pitchfork bifurcation cannot occur. While the 

first condition of the saddle-node bifurcation is satisfied. 
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Now, by substituting 𝑉∗ in Eq. (15) we get 

𝐷2𝑓(𝐸2, 𝑤7
∗)(𝑉∗, 𝑉∗) = (𝑑𝑖𝑗

∗)
3×1

 

 

Where 𝑑11
∗ = [𝛽1

2𝐾1
∗ − 𝐾2

∗𝛽1𝛽2 − 𝐾3
∗𝛽2

2 − 𝐾4
∗𝛽1 − 𝐾5

∗](𝑣3
∗)2; 

 𝑑21
∗ = [𝛽1

2𝐾6
∗ + 𝐾2

∗𝑒1𝛽1𝛽2 + 𝐾3
∗𝑒1𝛽2

2 + 𝐾4
∗𝑒2𝛽1 + 𝐾5

∗𝑒2 − 𝐾7
∗𝛽2](𝑣3

∗)2 

 𝑑31
∗ = 𝐾7

∗𝛽2(𝑣3
∗)2 

 

Here 𝐾𝑖
∗ = 𝐾𝑖(𝐸2, 𝑤7

∗) in Eq. (15) for all 𝑖 = 1,2, … ,7. Hence,   it is obtain: 

(Ψ∗)𝑇[𝐷2𝑓(𝐸2, 𝑤7
∗)(𝑉∗, 𝑉∗)]

= [𝛽3𝛽1
2𝐾1

∗ + 𝛽4𝛽1
2𝐾6

∗ + (𝐾2
∗𝛽1 + 𝐾3

∗𝛽2)𝛽2(𝛽4𝑒1 − 𝛽3) + (𝐾4
∗𝛽1 + 𝐾5

∗)(𝛽4𝑒2 − 𝛽3)

+ 𝐾7
∗𝛽2(1 − 𝛽4)]𝛹3

∗(𝑣3
∗)2 

 

So, according to condition (17b) we obtain that (Ψ∗)𝑇[𝐷2𝑓(𝐸2, 𝑤7
∗)(𝑉∗, 𝑉∗)] ≠ 0. 

Thus according to Sotomayorś theorem, system (2) undergoes saddle-node bifurcation around 𝐸2 and the proof is 

complete.      

     

V.  THE HOPH BIFURCATION OF ANALYSIS 
 In this section, the possibility of existence of periodic dynamic in system (2) due to changing the value of one 

parameter is studied. First, since the Jacobian matrices of system (2) at 𝐸0 𝑎𝑛𝑑 𝐸1, those given by Eq. (9) and Eq. 

(10) respectively, have always three real eigenvalues then there is no possibility of occurrence of Hopf bifurcation 

around them. On the other hand the possibility of occurrence of Hopf bifurcation around the positive equilibrium 

point is discussed in the following theorem. 

 

Theorem 5. Suppose that the conditions (12a), (12b) and (12c) along with the following conditions are satisfied: 

 𝑎33𝑎23 + 𝑎13𝑎21 < 0                (18a) 

 (𝑎11 + 𝑎22)(𝑎12𝑎21 − 𝑎11𝑎22) + 𝑎22𝑎23𝑎32 + 𝑎32𝑎13𝑎21 < 0                                       (18b) 

 

Then system (2) undergoes a Hopf bifurcation around the equilibrium point 𝐸2as the parameter 𝑤7 passes through 

the value  

𝑤7
∼ =

1

2𝐼1

(𝐼2 + √(𝐼2)2 − 4𝐼1𝐼3) + (1 − 𝑛)𝑦2
∗𝑤5 − 𝑤4,   

where 𝐼𝑖 ; 𝑖 = 1,2,3 are given in the proof. 

 

Proof. Recall that according to the Hopf bifurcation theorem system (2) undergoes a Hopf bifurcation around 𝐸2 

provided that the Jacobian matrix 𝐽2, which given in Eq. (11a), have two complex eigenvalues with the third real and 

negative: 

 𝜆1,2(𝑤7) = 𝜉1(𝑤7) ± 𝑖𝜉2(𝑤7);  𝜆3 ∈ ℛ and𝜆3 < 0                                                        (19a) 

 

Such that: 

 𝜉1(𝑤7
∼) = 0                 (19b) 

 
𝑑𝜉1

𝑑𝑤7
|

𝑤7=𝑤7
∼

≠ 0                               (19c) 

 

Now Straightforward computation gives that conditions (12a)-(12c) guarantee that the coefficients of the 

characteristic equation (11b), 𝐶𝑖 for 𝑖 = 1,2,3, are positive. However ∆= 𝐶1𝐶2 − 𝐶3 can be rewritten as 

 ∆= 𝐼1(𝑎33)2 + 𝐼2𝑎33 + 𝐼3 
 

where  

𝐼1 = −(𝑎11 + 𝑎22) > 0 

𝐼2 = −(𝑎11 + 𝑎22)2 + 𝑎32𝑎23 < 0 

𝐼3 = (𝑎11 + 𝑎22)(𝑎12𝑎21 − 𝑎11𝑎22) + 𝑎22𝑎23𝑎32 + 𝑎32𝑎13𝑎21 
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Clearly conditions (12a)-(12c) with the conditions (18a) and (18b) guarantee that the equation ∆= 𝐶1𝐶2 − 𝐶3 = 0 

has two opposite sign real roots given by 

 𝑎33 = −
𝐼2

2𝐼1
−

√(𝐼2)2−4𝐼1𝐼3

2𝐼1
< 0; 𝑎33 = −

𝐼2

2𝐼1
+

√(𝐼2)2−4𝐼1𝐼3

2𝐼1
> 0 

 

Moreover, since condition (12c) guarantees that 𝑎33 is negative, hence by using the form of 𝑎33 in Eq. (11a) we 

obtain that the equation ∆= 𝐶1𝐶2 − 𝐶3 = 0 as the parameter 𝑤7 passes through the value 𝑤7
∼ that given above. 

Accordingly, for 𝑤7 = 𝑤7
∼ the characteristic equation (11b) can be written  

 (𝜆 + 𝐶1)(𝜆2 + 𝐶2) = 0                              (20) 

 

It is easy to verify that Eq. (20) has three roots 𝜆1,2 = ±𝑖√𝐶2 and 𝜆3 = −𝐶1 < 0. Therefore condition (19b) holds 

with 𝜉2(𝑤7
∼) = √𝐶2 ≠ 0.   

Further, for all values of 𝑤7 in the neighborhood of 𝑤7
∼, the roots are in general given in form of Eq. (19a) with 

𝜆3(𝑤7) = −𝐶1(𝑤7) < 0. 

 

Now by substituting the complex eigenvalues given by (19a) in the Eq. (20) and then calculating the derivative with 

respect to the bifurcation parameter 𝑤7, and then comparing the two sides of the resulting equation and equating 

their real and imaginary parts, it is obtain that : 

Ψ(𝑤7)𝜉1
′(𝑤7) − Φ(𝑤7)𝜉2

′(𝑤7) = −Θ(𝑤7)

Φ(𝑤7)𝜉1
′(𝑤7) + Ψ(𝑤7)𝜉2

′(𝑤7) = −Γ(𝑤7)
                            (21) 

 

here: Ψ(𝑤7) = 3(𝜉1(𝑤7))2 + 2𝐶1(𝑤7)𝜉1(𝑤7) + 𝐶2(𝑤7) − 3(𝜉2(𝑤7))2 

 Φ(𝑤7) = 6𝜉1(𝑤7)𝜉2(𝑤7) + 2𝐶1(𝑤7)𝜉2(𝑤7) 

Θ(𝑤7) = (𝜉1(𝑤7))
2

𝐶1
′(𝑤7) + 𝐶2

′(𝑤7)𝜉1(𝑤7) + 𝐶3
′(𝑤7) − 𝐶1

′(𝑤7)(𝜉2(𝑤7))
2
 

 Γ(𝑤7) = 2𝜉1(𝑤7)𝜉2(𝑤7)𝐶1
′(𝑤7) + 𝐶2

′(𝑤7)𝜉2(𝑤7) 

 

Now by solving the linear system (21) by using Cramerś rule for the unknowns 𝜉1
′(𝑤7)and𝜉2

′(𝑤7), gives that  

𝜉1
′(𝑤7) = −

Θ(𝑤7)Ψ(𝑤7)+Γ(𝑤7)Φ(𝑤7)

(Ψ(𝑤7))2+(Φ(𝑤7))2                 (22)  

 

Therefore the second necessary and sufficient condition of Hopf bifurcation (19c) will be satisfied if and only if  

Θ(𝑤7
∼)Ψ(𝑤7

∼) + Γ(𝑤7
∼)Φ(𝑤7

∼) ≠ 0               (23) 

 

Note that for 𝑤7 = 𝑤7
∼ we have:   

Ψ(𝑤7
∼) = −2𝐶2(𝑤7

∼) 

Γ(𝑤7
∼) = −(𝑎11 + 𝑎22)√𝐶2(𝑤7

∼) 

Φ(𝑤7
∼) = 2𝐶1(𝑤7

∼)√𝐶2(𝑤7
∼) 

Θ(𝑤7
∼) = −(𝑎11 + 𝑎22)𝑎33 + 𝑎23𝑎32 

 

Substitution into Eq.(23) gives 

Θ(𝑤7
∼)Ψ(𝑤7

∼) + Γ(𝑤7
∼)Φ(𝑤7

∼)
= −2𝐶2(𝑤7

∼)[−(𝑎11 + 𝑎22)𝑎33 + 𝑎23𝑎32] + 2𝐶2(𝑤7
∼)[(𝑎11 + 𝑎22)(𝑎11 + 𝑎22 + 𝑎33)] > 0 

 

Then the second condition (19c) of the Hopf bifurcation is satisfied. So, system (2) undergoes a Hopf bifurcation 

around the equilibrium point 𝐸2 at the parameter 𝑤7 = 𝑤7
∼ and the proof is complete.         

 

VII.  NUMERICAL SIMULATION 
In this section, the global dynamics of system (2) is studied numerically for different sets of initial values a long 

with different sets of parameters values. The objectives of this study are determine the effect of varying the 
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parameters values on the dynamics of system (2) as well as confirm our obtained analytical results. Now for the 

following hypothetical biologically feasible set of parameters values: 
𝑤1 = 1, 𝑤2 = 1, 𝑤3 = 0.4, 𝑤4 = 0.1, 𝑤5 = 0.2

𝑤6 = 0.1, 𝑤7 = 0.1, 𝑒1 = 0.5, 𝑒2 = 0.5, 𝑛 = 0.2  
                                               (24) 

 

The trajectory of the system (2) is drawn in the Fig. (2a), while the time series for 𝑥, 𝑦 and 𝑧 starting from three 

different initial points are drawn in the Fig. (2b)-Fig. (2d) respectively. 

 

 
 

Fig. (2): (a) 3D Phase plot of system (2) for the data (24) with different initial  points (b) Time series of the trajectories of 

𝒙. (c) Time series of the trajectories of  𝒚. (d) Time series of the trajectories of  𝒛. 

 

Clearly, these figures show that system (2) approaches asymptotically to the positive equilibrium point 𝐸2 =
(0.36, 0.49, 0.33) starting from three different initial points and this is confirming our obtained analytical results 

regarding to existence of a globally asymptotically stable positive equilibrium point. 

 

Now in order to investigate the effect of varying one parameter value on the dynamical behavior of system (2), the 

system is solved numerically using Range- Kutta six order method along with four steps predictor corrector method 

for the data given in Eq. (24) with varying one parameter value each time and the obtained results are summarized 

in the following table and plotted in the form of phase plots and time sires as mentioned in the following table. 

 
Table (1): Dynamical behavior of system (2) as a function of a specific parameter with the rest of parameters as in Eq. (24). 

 

Parameter Range Behavior Figure 

𝑤1 

𝑤1 < 0.55 𝐸1 is asymptotically stable. Figs. (3a) and (4a). 

0.55 ≤ 𝑤1 < 1.15 𝐸2 is asymptotically stable. Figs. (2a)-(2d). 

1.15 ≤ 𝑤1 < 1.80 Periodic attractor. Figs. (3b) and (4b). 

𝑤1 ≥ 1.80 𝐸1 is asymptotically stable. Figs. (3c) and (4c). 

𝑤2 
𝑤2 < 0.003 𝐸1 is asymptotically stable. Similar behavior as 

that of 𝑤1 0.003 ≤ 𝑤2 < 1.30 𝐸2 is asymptotically stable. 
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1.30 ≤ 𝑤2 < 1.80 Periodic attractor. 

𝑤2 ≥ 1.80 𝐸1 is asymptotically stable. 

𝑤3 

0.04 ≤ 𝑤3 < 0.3 𝐸1 is asymptotically stable. Figs. (5a) and (6a). 

0.3 ≤ 𝑤3 < 0.4 Periodic attractor. Figs. (5b) and (6b). 

0.4 ≤ 𝑤3 < 0.75 𝐸2 is asymptotically stable. Figs. (2a) - (2d). 

𝑤3 ≥ 0.75 𝐸1 is asymptotically stable. Figs. (5c) and (6c). 

𝑤4 

𝑤4 < 0.09 Periodic attractor. Figs. (7a) and (8a). 

0.09 ≤ 𝑤4 < 0.15 𝐸2 is asymptotically stable. Figs. (2a) - (2d). 

𝑤4 ≥ 0.15 𝐸1 is asymptotically stable. Figs. (7b) and (8b). 

𝑤5 

𝑤5 < 0.15 
Periodic attractor. 

 Similar behavior as 

that of 𝑤4 0.15 ≤ 𝑤5 < 0.60 𝐸2 is asymptotically stable. 

𝑤5 ≥ 0.60 𝐸1 is asymptotically stable. 

𝑤6 

𝑤6 < 0.080 Periodic attractor. 
Similar behavior as 

that of 𝑤4 
0.080 ≤ 𝑤6 < 0.30 𝐸2 is asymptotically stable. 

𝑤6 ≥ 0.30 𝐸1 is asymptotically stable. 

𝑤7 
𝑤7 < 0.050 Periodic attractor. Figs. (9a) – (9d) 

𝑤7 ≥ 0.050 𝐸2 is asymptotically stable. Figs. (2a) - (2d). 

𝑒1 

𝑒1 < 0.35 𝐸1 is asymptotically stable. 

Similar behavior as 

that of 𝑤1 

0.35 ≤ 𝑒1 < 0.55 𝐸2 is asymptotically stable. 

0.55 ≤ 𝑒1 < 0.90 Periodic attractor. 

𝑒1 ≥ 0.90 𝐸1 is asymptotically stable. 

𝑒2 

𝑒2 < 0.20 𝐸1 is asymptotically stable. 
Figs. (10a) and 

(11a). 

0.20 ≤ 𝑒2 < 0.70 𝐸2 is asymptotically stable. Figs. (2a) - (2d). 

𝑒2 ≥ 0.70 
Periodic attractor. 

 

Figs. (10b) and 

(11b). 

𝑛 
0 < 𝑛 < 0.35 𝐸2 is asymptotically stable. Figs. (2a) - (2d). 

0.35 ≤ 𝑛 < 1 Periodic attractor. Figs. (12) and (13). 
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Fig. (3): 3D Phase plots of system (2) for the data (24) with different values of 𝒘𝟏. (a) 𝑬𝟏 is asymptotically stable for 

𝒘𝟏 = 𝟎. 𝟒. (b) Periodic attractor for 𝒘𝟏 = 𝟏. 𝟓. (c) 𝑬𝟏 is asymptotically stable for 𝒘𝟏 = 𝟐 . 

 

 
 

  

 
 

Fig. (4): (a) Time series for the attractor in Fig. (3a). (b) Time series for the attractor in Fig. (3b). (c) Time series for the 

attractor in Fig. (3c). 
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Fig. (5): 3D Phase plots of system (2) for the data (24) with different values of 𝒘𝟑. (a) 𝑬𝟏 is asymptotically stable for 

𝒘𝟑 = 𝟎. 𝟐𝟎. (b) Periodic attractor for 𝒘𝟑 = 𝟎. 𝟑𝟎. (c) 𝑬𝟏 is asymptotically stable for 𝒘𝟑 = 𝟎. 𝟖𝟎 . 

 

 

 
Fig. (6): (a) Time series for the attractor in Fig. (5a). (b) Time series for the attractor in Fig. (5b). (c) Time series for the 

attractor in Fig. (5c). 
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Fig. (7): 3DPhase plots of system (2) for the data (24) with different values of 𝒘𝟒. (a) Periodic attractor for 𝒘𝟒 = 𝟎. 𝟎𝟓. 

(b) 𝑬𝟏 is asymptotically stable for 𝒘𝟒 = 𝟎. 𝟐𝟎 . 

 

 
 

Fig. (8): (a) Time series for the attractor in Fig. (7a). (b) Time series for the attractor in Fig. (7b). 

 

The following figure shows the occurrence of Hopf bifurcation around the positive equilibrium point as varying in 

the parameter 𝑤7. Clearly, the figures given by Figs. (9a) – (9d) explain the transfers of the solution from positive 

asymptotically stable point to periodic dynamics for the data given by Eq. (24) as parameter 𝑤7 passing through the 

value𝑤7
∼ ≅ 0.049 . 
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Fig.(9): Time series for the solution of system (2) for the data (24) with different values of 𝒘𝟕. (a) 𝑬𝟐 =
(𝟎. 𝟑𝟔, 𝟎. 𝟒𝟗, 𝟎. 𝟑𝟑) is asymptotically stable point for 𝒘𝟕 = 𝟎. 𝟏. (b) Small periodic attractor for 𝒘𝟕 = 𝟎. 𝟎𝟒𝟓   (c) Large 

periodic attractor for 𝒘𝟕 = 𝟎. 𝟎𝟑𝟎. (d) Larger periodic attractor for 𝒘𝟕 = 𝟎. 𝟎𝟐𝟎 . 

 
 

Fig. (10): 3D Phase plots of system (2) for the data (24) with different values of 𝒆𝟐. (a) 𝑬𝟏 is asymptotically stable 

for 𝒆𝟐 = 𝟎. 𝟏𝟏. (b) Periodic attractor for 𝒆𝟐 = 𝟎. 𝟖𝟎 . 

 
  

Fig. (11): (a) Time series for the attractor in Fig. (10a). (b) Time series for the attractor in Fig. (10b). 

 

Clearly, from the below figures, it is observed that increasing the value of the vaccine rate causes decreasing in the 

infected predator 𝑧 and then the solution of system (2) approaches to periodic dynamics near to the 𝑥𝑦-plane. 
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Fig. (12): 3D Phase plots of system (2) for the data (24) with different values of 𝒏. (a) Small periodic attractor for 𝒏 =
𝟎. 𝟑𝟓.(b) Large periodic attractor for 𝒏 = 𝟎. 𝟔𝟎. (c) Larger periodic attractor for  𝒏 = 𝟎. 𝟗𝟓 . 

 

 
Fig. (13): (a) Time series for the attractor in Fig. (12a). (b) Time series for the attractor in Fig. (12b). (c) Time series for 

the attractor in Fig. (12c). 
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Finally, to explain the dynamical behavior at the axial equilibrium point 𝐸1  we used the same set of hypothetical 

parameters values that given in Eq. (24) and then the trajectory of system (2) is drawn in the Fig. (14) starting from 

three different initial points that satisfy the conditions of globally asymptotically stable sub region of  𝐸1 (i.e. belong 

basin of attraction of 𝐸1). to the 

 
 

 
 

Fig. (14): (a) 3D Phase plot of system (2) for the data (24) with different initial points (b) Time series of the trajectory 

that starting at (𝟎. 𝟖, 𝟎. 𝟎𝟕, 𝟎. 𝟏). (c) Time series of the trajectory that starting at (𝟎. 𝟔, 𝟎. 𝟎𝟓, 𝟎. 𝟏𝟐). (d) Time series of the 

trajectory that starting at (𝟎. 𝟒, 𝟎. 𝟎𝟑, 𝟎. 𝟏𝟓). 

 

Clearly, these figures show that the solution of system (2) approaches asymptotically to the axial equilibrium point 

𝐸1 = (1, 0, 0) starting from three different initial points satisfy conditions of theorem (2) and this is confirming our 

obtained analytical results. 
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addition it is a globally asymptotically stable in the interior of sub region that satisfy the conditions (14a)-(14f). On 

the other hand, system (2) near 𝐸2 possesses a saddle-node bifurcation but neither transcritical nor pitchfork 

bifurcation can occurred provided that conditions (12a), (12b), (17a) and (17b) are hold. However, it has a Hopf 

bifurcation around 𝐸2provided that the conditions (12a), (12b), (12c), (18a) and (18b) are satisfied. Finally to 

understand the effect of varying each parameter on the global dynamics of system (2) and to confirm our obtained 

analytical results, system (2) has been solved numerically and the following results are obtained for the set of 

hypothetical parameters values that given by Eq. (24): 

1. System (2) has two types of attractors a stable point or a periodic attractor. 

2. Decreasing the maximum attack rate of the susceptible predator 𝑤1 in the range 𝑤1 < 0.55 causes 

extinction in the predator species and the solution approaches asymptotically to axial equilibrium point 𝐸1 

indicating to occurrence of bifurcation. However increasing the value of 𝑤1 in the range 1.15 ≤ 𝑤1 < 1.80 

leads to losing stability of the positive point and the solution approaches asymptotically to periodic 

dynamics in 𝐼𝑛𝑡. 𝑅+
3 , indicating to occurrence of Hopf bifurcation. Finally increasing of the 𝑤1 in the range 

𝑤1 ≥ 1.80leads again to extinction in predator species and the system (2) approaches asymptotically to the 

axial equilibrium point 𝐸1 on the 𝑥-axis too, which means to occurrence of bifurcation.  

3. It is observed that varying the maximum attack rate of the infected predator 𝑤2 or the conversion rate of the 

susceptible predator 𝑒1  have similar effect as that of varying of 𝑤1 on the dynamics of system (2). 

4. Decreasing the half-saturation constant 𝑤3 in the range 0.3 ≤ 𝑤3 < 0.4 leads to losing stability of the 

positive equilibrium point and the solution approaches asymptotically to periodic dynamics in  𝐼𝑛𝑡. 𝑅+
3 , 

indicating to occurrence of Hopf bifurcation, however further decreasing of this parameter in the range 

0.04 ≤ 𝑤3 < 0.3 causes extinction in the predator species and the solution approaches asymptotically to 

axial equilibrium point 𝐸1 indicating to occurrence of bifurcation. Finally increasing of the 𝑤3 in the range 

𝑤3 ≥ 0.75 leads again to extinction in predator species and the system (2) approaches asymptotically to the 

axial equilibrium point 𝐸1 on the 𝑥-axis too, which means to occurrence of bifurcation. 

5. Decreasing the natural death rate of susceptible and infected predator 𝑤4 in the range 𝑤4 < 0.09 leads to 

the periodic dynamics in 𝐼𝑛𝑡. 𝑅+
3  instead of approaching to positive point, indicating to occurrence of Hopf 

bifurcation. Finally increasing the value of 𝑤4 in the range 𝑤4 ≥ 0.15 causes extinction in the predator 

species and the solution approaches asymptotically to axial equilibrium point 𝐸1 on the 𝑥-axis, indicating to 

occurrence of bifurcation. 

6. It is observed that varying the contact infected rate 𝑤5 or the external infected rate 𝑤6 have similar effect as 

that of varying of 𝑤4 on the dynamics of system (2). 

7. Decreasing the disease death rate of the infected predator 𝑤7 in the range 𝑤7 < 0.050 leads to losing of the 

stability of the positive equilibrium point and the solution of system (2) approaches asymptotically to 

periodic dynamics, indicating to occurrence of Hopf bifurcation. Finally increasing the value of 𝑤7 in the 

range 𝑤7 ≥ 0.050 do not have qualitative change of the dynamics of system (2) and the solution still 

approaches asymptotically to positive equilibrium point 𝐸2 in 𝐼𝑛𝑡. 𝑅+
3 . 

8. Decreasing the conversion rate of the infected predator 𝑒2 in the range 𝑒2 < 0.20 causes extinction in the 

predator species and the solution approaches asymptotically to axial equilibrium point 𝐸1 on the 𝑥-axis, 

indicating to occurrence of bifurcation. Finally increasing the value of 𝑒2 in the range 𝑒2 ≥ 0.70 leads to 

losing stability of the positive point and the solution approaches asymptotically to periodic dynamics in 

𝐼𝑛𝑡. 𝑅+
3 , indicating to occurrence of Hopf bifurcation. 

9. Decreasing the vaccine rate 𝑛 in the range 0 < 𝑛 < 0.35 do not have qualitative change of the dynamics of 

system (2) and the solution still approaches asymptotically to positive equilibrium point 𝐸2 in 𝐼𝑛𝑡. 𝑅+
3 . 

However increasing the value of 𝑛 in the range 0.35 ≤ 𝑛 < 1 leads to instability of the positive point and 

the solution approaches asymptotically to periodic dynamics near to the 𝑥𝑦-plane, indicating to occurrence 

of Hopf bifurcation.  
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